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ABSTRACT 

 
The “theory of informatons” explains the gravitational interactions by the hypothesis that 

“information” is the substance of gravitational fields.  The constituent element of that 

substance is called an “informaton”.  

 

The theory starts from the idea that any  material object manifests itself in space by the 

emission of informatons: granular mass and energy less entities rushing away with the speed 

of light and carrying information about the position (“g-information”) and about the velocity 

(“β-information”) of the emitter.   In this article the gravitational field is characterised; the 

laws of gravito-electromagnetism are mathematically deduced from the dynamics of the 

informatons; the gravitational interactions are explained as the effect of the trend of a 

material object to become blind for flows of information generated by other masses; and 

gravitons are identified as informatons carrying a quantum of energy.    

 

 

INTRODUCTION 

 
Daily contact with the things on hand confronts us with their substantiality.  An object is not 

just form, it is also matter.  It takes space, it eliminates emptiness.  The amount of matter 

within the contours of a physical body is called its mass. 

 

The mass of an object manifests itself when it interacts with other objects.  A fundamental 

form of interaction is “gravitation”.  Material objects (masses) action “at a distance” on each 

other: they attract each other and if they are free, they move to each other along the 

straight line that connects them.   

 

According to the classical theory of fields, the gravitational interactions can be  described by 

introducing the “gravitational field”:  each material object manifests its substantiality in 

space by creating and maintaining a vector field and each object in that field experiences a 

tendency to change its state of motion.  The “field theory” considers the gravitational field as 

the mathematical entity that mediates in the gravitational interaction.   

 

                                                           
*
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This is further developed by Oliver Heaviside
 (1)

  and Oleg Jefimenko
 (2)

.  In “the theory of 

gravito-electromagnetism” (G.E.M.)  they describe the gravitational field starting from the 

idea that it must be isomorphic with the electromagnetic field.   This implies that it should be 

characterized by two vectorial quantities that are analogue to respectively  the electric field 

E
r

 and the magnetic induction B
r

,  and that the relations governing these quantities should 

be analogue to Maxwell’s laws.    

Within the framework of general relativity, G.E.M. has been discussed by a number of 

authors
 (3)

.  It is shown that the gravitational analogues  to Maxwell’s equations (the G.E.M. 

equations) can be derived from the Einstein field equation. 

 

Although G.E.M.  describes the gravitational phenomena in a correct and coherent manner,  

it doesn’t create clarity about  the true nature of the “action at a distance”.  In the context of 

G.E.M., the gravitational field is a purely mathematical construction that doesn’t provide 

insight in the mechanisms  that are at the base of the physical laws. 

 

In this paper we develop the idea that, if masses can influence each other “at a distance”, 

they must in one way or another exchange data.  We assume that each mass emits 

information relative to its magnitude and its position, and is able to “interpret” the 

information emitted by its neighbours.  In this way we propose a physical foundation of 

G.E.M. by introducing “information” as the substance of the gravitational field.   

 

Explicitly, we start from the idea that the gravitational field of a material object can be 

explained as the macroscopic manifestation of the emission by that object of mass-, energy- 

and granular entities rushing away with the speed of light and carrying information about 

the position (“g-information”) and the velocity (“β-information”) of the emitter.  Because 

they transport nothing else than information, we call these entities “informatons”.  In the 

“postulate of the emission of informatons”, we define an informaton by its attributes and 

determine the rules that govern the emission of informatons by a point mass that is 

anchored in an inertial reference frame. 
 

The first consequence of that postulate is that a point mass at rest - and by extension any 

material object at rest - can be considered as the source of an expanding spherical cloud of 

informatons,  that - in an arbitrary point P - is characterised by the vectorial quantity gE
r

.  gE
r

 

is the density of the flow of g-information in that point.  That cloud of informatons can be 

identified with the gravitational field and the quantity gE
r

 with the gravitational field 

strength in P.  A second consequence is that the informatons emitted by a moving point 

mass, constitute a gravitational field that is characterised by two vectorial quantities:  gE
r

, 

the density of the g-information flow, and gB
r

, the density of the β-information cloud.  We 

show that the relations - arising from the dynamics of the informatons - between these two 

quantities (the laws of G.E.M.) are the gravitational analogues of the laws of Maxwell-

Heaviside. 

 

Next we explain the gravitational interaction between masses as the reaction of a point mass 

on the disturbance of the symmetry of its “own” gravitational field  by the field that, in its 
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direct vicinity, is created and maintained by other masses.  And finally we examine the 

emission of energy by an accelerating mass. 

 

 

I. The Postulate of the Emission of Informatons 

 
With the aim to understand and to describe the mechanism of the gravitational interaction, 

we introduce a new quantity in the arsenal of physical concepts: information.  We suppose 

that information is transported by mass and energy less granular entities that rush through 

space with the speed of light (c).  We call these information carriers informatons.  Each 

material object continuously emits informatons.  An informaton always carries g-

information,  that is at the root of gravitation.    

 

The emission of informatons by a  point mass  (m)  anchored in an inertial reference frame 

O, is governed by the postulate of the emission of informatons: 

 

A.  The emission is governed by the following rules: 

1. The emission is uniform in all directions of space,  and the informatons diverge with 

the speed of light (c = 3.10
8 

m/s) along radial trajectories relative to the location of 

the emitter.  

 

2. 
dt

dN
N =& , the rate at which a point-mass emits informatons

•
, is time independent and 

proportional to its mass m.  So, there is a constant K so that: 

mKN .=&
 

 

      3.  The constant K is equal to the ratio of the square of the speed of light (c) to the Planck  

           constant (h): 

1150
2

.10.36,1 −−== skg
h

c
K

 
 

 

B.  We call the essential attribute of an informaton its g-spin. The g-spin of an informaton 

refers to information about the position of its emitter and equals the elementary quantity of 

g-information.  It is represented by a vectorial quantity gs
r

, the “g-spin vector”:  

 

1. gs
r

 is points to the position of the emitter. 

 

2. All g-spin vectors have the same magnitude, namely:  

1360

0

.10.18,6
.

1 −−== sm
K

sg η
 

                                                           
•
 We neglect the possible stochastic nature of the emission, that is responsible for noise on the quantities that 

characterize the gravitational field. So, 
.

N is the average emission rate. 
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           (
329

0 ..10.19,1
..4

1 −== mskg
Gπ

η  with G the gravitational constant) 

           sg,  the magnitude of the g-spin-vector, is the elementary g-information quantity. 

 

II. The gravitational Field of Masses at Rest 

 

2.1. The gravitational field of a point mass at rest 

 

In fig 1 we consider a point mass that is anchored in the origin of an inertial reference frame 

O.  It continuously emits informatons in all directions of space. 

 

The informatons that pass near a fixed point P - defined by the position vector r
r

 - have two 

attributes:  their velocity c
r

 and their g-spin vector gs
r

: 

 

rec
r

r
cc

r
r

r
.. ==                     and                    rg e

Kr

r

K
s

r
r

r
.

.

1
.

.

1

00 ηη
−=−=                                                                      

                                                                                  

                                                        Z                               c
r

 

                                                                                   P                                                                       

                                                                      gs
r

                 

                                                                               r
r

                                                       

                                                          

                                                              O     m                                                  Y 

                                               X                                                                          

Fig 1 

 

The rate at which the point mass emits g-information is the product of the rate at which it 

emits informatons with the elementary g-information quantity:                        

 

0

.
η
m

sN g =&

 
 

Of course, this is also the rate at which it sends g-information through any closed surface 

that spans m. 

 

The emission of informatons fills the space around m with an expanding cloud of g-

information.  This cloud has the shape of a sphere whose surface goes away - with the speed 

of light - from the centre O,  the position of the point mass. 

 

-  Within the cloud is a stationary state: because the inflow equals the outflow, each spatial 

    region contains an unchanging number of informatons and thus a constant quantity of g- 

    information.  Moreover, the orientation of the g-spin vectors of the informatons passing 
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    through a fixed point is always the same. 

 

-  The cloud can be identified with a continuum: each spatial region contains a very large 

   number of informatons:  the g-information is like continuously spread over the volume of 

the region. 

 

That cloud of g-information surrounding O constitutes the gravitational field 
*
 or the g-field 

of the point mass m. 

 

Without interruption “countless”  informatons are rushing through any - even very small - 

surface in the gravitational field: we can describe the motion of g-information through a 

surface  as a continuous flow of g-information. 

 

We know already that the intensity of the flow of g-information through a closed surface 

that spans O is expressed as: 

0

.
η
m

sN g =&

 

 

If the closed surface is a sphere with radius r, the intensity of the flow per unit area is given 

by: 

0
2...4 ηπ r

m

 
 

This is the density of the flow of g-information in each point P at a distance  r  from m (fig 1).  

This quantity is, together with the orientation of the g-spin vectors of the informatons that 

are passing near P, characteristic  for het gravitational field in that point. 

 

Thus, in a point P, the gravitational field of the point mass m is defined by the vectorial 

quantity gE
r

 :  

r
r

m
e

r

m
s

r

N
E rgg

rrr&r
.

...4
.

...4
.

..4 3
0

2
0

2 ηπηππ
−=−==

 

 

 

This quantity is the gravitational field strength or the g-field strength or the g-field.  In any 

point of the gravitational field of the point mass m, the orientation of gE
r

 
corresponds to the 

orientation of the g-spin-vectors of the informatons who are passing near that point.  And 

                                                           
*
  The time T elapsed since the emergence of a point-mass (this is the time elapsed since the emergence of the 

    universe) and the radius R of its field of gravitation are linked by the relation R = c.T.  Assuming that the  

    universe - since its beginning (1,8.10
10

 years ago) - uniformly expands, a point at a distance r  from  m runs 

    away with speed v: rHr
T

c
R

r
v ..

1
. 0=== .  H0 is the Hubble constant:    

yearslightmillion

sm

T
H

−
== /

10.7,1
1 4

0
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the magnitude of gE
r

 is the density of the g-information flow in that point.  Let us note that 

gE
r

 is opposite to the sense of movement of the informatons. 

 

Let us consider a surface-element dS in P  (fig 2,a).  Its orientation and magnitude are 

completely determined by the surface-vector dS  (fig 2,b) 

 

                                                                                              

                                               nedSdS
r

.=                                                                nedSdS
r

.=  

                                                                                                 

                                                                                                                α       

                                                                       =                                               P    

                gE
r

                                                                             gE
r

 

                            Fig 2,a                                                               Fig 2,b 

By gdΦ , we represent  the rate at which g-information flows through dS in the sense of the 

positive normal and we call this scalar quantity the elementary g-flux through dS:  

 

αcos... dSEdSEd ggg −=−=Φ
r

 
 

For an arbitrary closed surface S that spans m, the outward flux (which we obtain by 

integrating the elementary contributions gdΦ over S) must be equal to the rate at which the 

mass emits g-information.  Thus: 

0

.
η
m

dSEgg =−=Φ ∫∫
r

 

This relation  expresses the conservation of g-information  in the case of a point mass at rest. 

 

2.2. The gravitational field of a set of point-masses at rest 

 

We consider a set of point-masses m1,…,mi,…mn   that  are anchored in an inertial frame O.  

 

In an arbitrary point P, the flows of g-information who are emitted by the distinct masses are 

defined by the gravitational fields gngig EEE
rrr

,...,,...,1  .  

 

gdΦ , the rate at which g-information flows through a surface-element dS in P  in the sense 

of the positive normal, is the sum of the contributions of the distinct masses: 

 

dSEdSEdSEd g

n

i
gi

n

i
gig .).().(

11

rrr
−=−=−=Φ ∑∑

==

 

 

So, the effective density of the flow of g-information in P (the effective  g-field ) is completely 

defined by: 
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∑
=

=
n

i
gig EE

1

rr
 

 

We conclude:  The g-field of a set of point masses at rest is in any point of space completely 

defined by the vectorial sum of the g-fields caused  by the distinct masses.   

 

Let us note that the orientation of the effective g-field has no longer a relation with the 

direction in which the passing informatons are moving. 

 

One shows easily that the outward g-flux through a closed surface in the g-field of a set of 

anchored point masses only depends on the spanned masses min: 

 

0

.
η

in
gg

m
dSE =−=Φ ∫∫

r

 

This relation expresses the conservation of g-information in the case of a set of point  masses 

at rest. 

 

2.3. The gravitational field of a mass continuum at rest 

 

We call an object in which the matter in a time independent manner is spread over the 

occupied volume, a mass continuum.  

 

In each point Q of such a continuum, the accumulation of mass is defined by the (mass) 

density Gρ .  To define this scalar quantity one considers a volume element dV that contains 

Q, and one determines the enclosed mass dm.  The accumulation of mass in the vicinity of Q 

is defined by: 

 

dV

dm
G =ρ

 
 

A mass continuum - anchored in an inertial frame - is equivalent to a set of infinitely many 

infinitesimal mass elements dm.  The contribution of each of them to the field strength in an 

arbitrary point P is gEd
r

.  gE
r

, the effective field strength in P, is the result of the integration 

over the volume of the continuum of all these contributions. 

 

It is evident that the outward g-flux through a closed surface S only depends on the mass 

enclosed by the surface (the enclosed volume is V).  

 

∫∫∫∫∫ =−
V

G

S

g dVdSE ..
1

.
0

ρ
η

r
 

 

That is equivalent with (theorem of Ostrogradsky)
 (4)

:   
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0η
ρG

gEdiv −=
r

 

 

This relation   expresses the conservation of g-information  in the case of a mass contiuum at 

rest. 

Furthermore, one can show that:  0=gErot
r

, what implies the existence of a gravitational 

potential function Vg for which: gg gradVE −=
r

. 

 

III. The gravitational Field of moving Masses 

 

3.1.  Rest mass and relativistic mass 

 

                                                     Z=Z’ 
 
 
                                                                                                                                
                                                              v

r
 

 

                                                        m0   P1=O’                                   Y’ 
  

’ 
                                             X’                           O                                          Y 
                                                                                                          
                                    
                                    X 

Fig 3 
 

In fig 3, we consider a point mass that moves with constant velocity zevv
rr
.= along the Z-axis 

of an inertial reference frame O .   At the moment t = 0, it passes through the origin O and at 

the moment t = t through the point P1. 

 

We posit that N&  - the rate at which a point mass emits informatons in the space connected 

to O - is determined by its rest mass m0 and is independent of its motion: 

 

0.mK
dt

dN
N ==&

 
 

That implies that, if the time is read on a standard clock anchored in O, dN - the number of 

informatons that during the interval dt by  a - whether or not moving - point mass is emitted 

in the space connected to O, is:  

dtmKdN .. 0=
 

 
We can the space-time also connect to an inertial reference frame O’ (fig 3) whose origin is 

anchored to the point mass and that is running away relative to O with the velocity zevv
rr
.= . 
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We assume that t = t’ = 0 when the mass passes through O  (t is the time read on a standard 

clock in O and t’ the time read on a standard clock in O’). 

 

We determine the time that expires while the moving point mass emits dN informatons. 

 

1. An observer in O uses therefore a standard clock that is linked to that reference frame.   

    The emission of dN informatons takes dt seconds.  The relationship between dN and dt is: 

 
dtmKdN .. 0=  

 
2. To determine the duration of the same phenomenon, the observer in O can also read the   

     time on the moving clock, that is the standard clock linked to the inertial reference frame  

    O’.   According to that clock, the emission of dN  informatons takes dt’ seconds.   

 
(x, y, z; t) - the coordinates of an event connected to O - and (x’, y’, z’; t’) - the coordinates of 

the same event connected to O’ - are related by the Lorentz-transformation
 (5)

: 

 

 

xx ='  'xx =  

yy ='  'yy =  

21
'

β−

−= vtz
z  

21

''

β−

+= vtz
z  

2

2

1
'

β−

−
=

z
c

v
t

t  
2

2

1

''

β−

+
=

z
c

v
t

t  

 
 
The relationship between dt and dt’ is: 
   

21

'

β−
= dt

dt     with    
c

v=β
 

 
So:  

'.
1

'.
1

.
1

'
....

22

0

200 dt
N

dt
m

K
dt

mKdtmKdN
βββ −

=
−

=
−

==
&

 

 
and:  

 

mK
m

K
N

dt

dN
.

1
.

1' 2

0

2
=

−
=

−
=

ββ

&
    with    

2

0

1 β−
=

m
m , the “relativistic mass” 

 
Conclusion: The rate at which a  point mass, moving with constant velocity relative to an 

inertial reference frame O, emits informatons in the space linked to O, is determined by its 

relativistic mass if the time is read on a standard clock that is anchored to that mass. 
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3.2. The field caused by a uniform rectilinear moving point mass 

 

In fig 4,a, we consider again a point mass with rest mass m0 that, with constant velocity 

zevv
rr
.= , moves along the Z-axis of an inertial reference frame O.  At the moment t = 0, it 

passes through the origin O and at the moment t = t  through the point P1.  It is evident that: 

tvzOP P .
11 ==

 
 
m0  continuously emits informatons that, with the speed of light, rush away with respect to 

the point where the mass is at the moment of emission.  We wish to determine the density 

of the flow of g-information - this is the g-field  - in a fixed point P.  The position of P relative 

to the reference frame O is determined by the time independent Cartesian coordinates (x, y, 

z), or by the time dependent position vector PPr 1=r .  θ  is the angle between r
r

and the Z-

axis. 

 
 
               Z=Z’                                                                               Z’ 
                                                       P                                                                           
                    v

r
      θ         r

r
                                                                                               P 

                                            gE
r

                                                                            'r
r

                                                

           P1=O’                                               Y’                                          θ’          '
gE
r

 

 
                                                                                                      O’                                        Y’ 
    X’ 
      
                    O                                              Y                    X’ 
                                                                                                              
                                                                                                                    (b) 
    X                                             

(a)                                                                      
Fig. 4 

 
Relative to the inertial reference frame O’, that is anchored to the moving mass and that at 

the moment t = t’ = 0, coincides with O (fig 4,b), the instantaneous value of the density of 

the flow of g-information in P is determined by: 

 

'.
'4 3

0

0' r
r

m
Eg πη

−=
r

 
 

Indeed, relative to O’ the point mass is at rest and he position of P is determined by the time 

dependant position vector 'r
r

 or by the Cartesian coordinates (x’, y’, z’).  So, the g-field 

generated by the mass is determined by 2.1.  

   

The components of 
'
gE
r

 in O’X’Y’Z’, namely: 

 

'.
'4 3

0

0'
' x

r

m
Egx πη

−=            '.
'4 3

0

0'
' y

r

m
Egy πη

−=           '.
'4 3

0

0'
' z

r

m
Egz πη

−=
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determine in P the densities of the flows of g-information respectively through a surface 

element dy’.dz’ perpendicular to the X’-axis, through a surface element dz’.dx’ perpendicular 

to the Y’-axis and through a surface element dx’.dy’ perpendicular to the Z’-axis.  

 

The g-fluxes through these different surface elements in P, or the rates at which g-

information flows through it are: 

 

''..
'4

'.
''..

''..
'4

'.
''..

''..
'4

'.
''..

3
0

0'
'

3
0

0'
'

3
0

0'
'

dydx
r

zm
dydxE

dxdz
r

ym
dxdzE

dzdy
r

xm
dzdyE

gz

gy

gx

πη

πη

πη

−=

−=

−=

  

The Cartesian coordinates of P in the frames O and O’ are connected by
 (5)

: 
 

x’ = x                          y’ =y                         
22 11

.
' 1

ββ −

−
=

−

−= Pzztvz
z  

 

And the line elements by:      dx’ =dx                     dy’=dy                    
21

'
β−

= dz
dz

 
 

Further•::  
2

22

1

sin.1
.'

β

θβ

−

−
= rr  

 
So relative to O, the g-information fluxes that  the moving mass sends - in the positive 

direction -  through the surface elements dy.dz, dz.dx and dx.dy  in P are: 

 

                                                           

•
 In O:  

222 )(
1Pzzyxr −++= ,   

r

yx 22

sin
+

=θ        and      
r

zz P1cos
−

=θ .   

And in O’:   
222 '''' zyxr ++=     and     

'

''
'sin

22

r

yx +
=θ . 

 

We express r’ in function of x, y and z: 

2
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22222
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2
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2
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1
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cos.)1.(sin.

1

)(
sin.

)1(

)(
'

β
θβ

β
θβθ

β
θ

β −

−
=

−

+−
=

−
−+=

−
−++= r

rrzz
r

zz
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dydxzz
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dxdzy
r

m

dzdyx
r

m

P .)..(

)sin.1(

1
.

4

...

)sin.1(

1
.

4

...

)sin.1(

1
.

4

1

2

3
22

2

3
0

0

2

3
22

2

3
0

0

2

3
22

2

3
0

0

−
−

−−

−

−−

−

−−

θβ

β
πη

θβ

β
πη

θβ

β
πη

 
 

Since the densities in P of the flows of g-information in the direction of the X-, the Y- and the 

Z-axis are the components of the g-field caused by the moving point mass m0 in P, we find: 
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So, the g-field caused by the moving point mass in the fixed point P is: 

 

rg e
r
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rrw
.
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We conclude: A point mass describing - relative to an inertial reference frame O - a uniform 

rectilinear movement creates in the space linked to that frame a time dependent 

gravitational field.  gE
r

, the g-field in an arbitrary point P, points at any time to the position 

of the mass at that moment
•
 and its magnitude is: 

 

2

3
22

2

2
0

0

)sin.1(

1
.

4
θβ

β
πη

−

−=
r

m
Eg

 
 
If the speed of the mass is much smaller than the speed of light, this expression reduces 

itself to that valid in the case of a mass at rest.  This non-relativistic result could also been 

obtained if one assumes that the displacement of the point mass during the time interval 

                                                           
•
  From this conclusion on the direction of the g-field, one can deduce that the movement of an object in a 

gravitational field is determined by the present position of the source of the field and not by its light-speed 

delayed position. 
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that the informatons need to move from the emitter to P can be neglected compared to the 

distance they travel during that period. 

 

The orientation of the field strength implies that the spin vectors of the informatons that at a 

certain moment pass through P, point to the position of the emitting mass at that moment. 

 

3.3. The emission of informatons by a point mass describing a uniform rectilinear 

motion 

 

In fig 5 we consider a point mass m0  that moves with a constant velocity v
r

 along the Z-axis 

of an inertial reference frame.  Its instantaneous position (at the arbitrary moment t)  is  P1.                                                  
 
                                                                                                                c

r
    ∆θ 

                                        Z                                         P 

                                                   v
r

                               gs
r

                               

                                                        θ              r
r

 

                                                                                   

                                            P1    m0             0r
r

                            

                                                        θ0 

                                                                            

                                             P0                    Fig 5 

The position of P, an arbitrary fixed point in space, is defined by the vector PPr 1=r .  The 

position vector r
r

 - just like the distance r and the angle θ - is time dependent because the 

position of P1 is constantly changing. 

 

The informatons that - with the speed of light -  at the moment t are passing near  P, are 

emitted when m0 was at P0.  Bridging the distance  P0P = r0  took the time interval  Δt: 

 

c

r
t 0=∆

 
 

During their rush from P0  to  P, the mass moved from P0 to P1: 

 

tvPP ∆= .10  
 

-  c
r

, the velocity of the informatons,  points in the direction of their movement, thus along 

    the radius P0P. 
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-  gs
r

, their g-spin vector, points to P1, the position of m0 at the moment t.  This is an 

    implication of rule B.1 of the postulate of the emission of informatons and confirmed by 

    the conclusion of  §3.2. 

 

The lines carrying  gs
r

and c
r

 form an angle θ∆ .  We call this angle, that is characteristic for 

the speed of the point mass, the “characteristic angle” or the “characteristic deviation”. 

The quantity )sin(. θβ ∆= gss   - referring to the speed of its emitter - is called the 

“characteristic g-information” or the “β-information” of an informaton.  

 
We note that an informaton emitted by a moving point mass, transports information 

referring to the velocity of that mass.  This information is represented by its “gravitational 

characteristic vector” or  “β-index” βs
r

 that is defined by: 

 

c

sc
s g

rr
r ×

=
β

 
 
-  The β-index is perpendicular to the plane formed by the path of the informaton and the  

   straight line that carries the g-spin vector, thus perpendicular to the plane formed by the 

   point P and the path of the emitter. 

 

-  Its orientation relative to that plane is defined by the “rule of the corkscrew”:  in the case 

   of fig 5, the β-indices have the orientation of the positive X-axis. 

 

-  Its magnitude is: )sin(. θβ ∆= gss ,  the β-information of the informaton. 

 

We apply the sine rule to the triangle P0P1P:        
tctv ∆

=
∆
∆

.

sin

.

)sin( θθ
 

 
It follows:  

 

⊥=== βθβθβ .sin..sin.. ggg ss
c

v
ss

 

⊥β  is the component of the dimensionless velocity 
c

v
r

r
=β  perpendicular to gs

r
 . 

 

Taking into account the orientation of the different vectors, the β-index of an informaton 

emitted by a point mass moving with constant velocity, can also be expressed as: 

 

c

sv
s g

rr
r ×

=β
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3.4. The gravitational induction of a point mass describing  a uniform 

        rectilinear  motion 

 

We consider again the situation of fig 5.   All informatons in dV - the volume element in P -

carry both g-information and β-information.  The β-information refers to the velocity of the 

emitting mass and is represented by the β-indices βs
r

:  

 

c

sv

c

sc
s gg

rrrr
r ×

=
×

=
β

 
 
If n is the density in P of the cloud of informatons (number of informatons per unit volume) 

at the moment t, the amount of β-information in dV is determined by the magnitude of the 

vector: 

dV
c

sv
ndV

c

sc
ndVsn gg ......

rrrr
r ×

=
×

=β
 

 
And the density of the the β-information (characteristic information per unit volume) in P is 

determined by:  

c

sv
n

c

sc
nsn gg

rrrr
r ×

=
×

= ... β
 

 

We call this (time dependent) vectorial quantity - that will be represented by gB
r

 - the 

“gravitational induction” or the “g-induction”
•
  in P: 

 

-  Its magnitude gB  determines the density of the β-information in P. 

-  Its orientation determines the orientation of the β-vectors βs
r

  of the informatons passing 

    near that  point. 

 

So, the g-induction caused in  P by the moving mass m0  (fig 5) is:  

 

).(. g
g

g sn
c

v

c

sv
nB

r
rrr

r
×=

×
=

 
 

N - the density of the flow of informatons in P (the rate per unit area at which the 

informatons  cross an elementary surface perpendicular to the direction of movement) - and 

n - the density of the cloud of informatons in P (number of informatons per unit volume) - 

are connected by the relation: 

c

N
n =

 
 

With    gg sNE
rr

.= ,  we can express the gravitational induction in P as:
 

                                                           
•
 This quantity is also called the “cogravitational field”, represented as K

r
 or the “gyrotation”, represented as 

Ω
r

. 
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22
).(

c

Ev
sN

c

v
B g

gg

rr
r

r
r ×

=×=  

 

Taking into account (3.2):    r
r

m
Eg

rw
.

)sin.1(

1
.

4
2

3
22

2

3
0

0

θβ

β
πη

−

−−=

 

We find:   

).(

)sin.1(

1
.

.4
2

3
22

2

32
0

0 rv
rc

m
Bg

rrr
×

−

−−=
θβ

β
πη

 

 

We define the constant 0ν  = 9,34.10
-27

  m.kg
-1

 as:    
0

20
.

1

η
ν

c
=

 

And finally, we obtain:

 

).(

)sin.1(

1
.

4

.

2

3
22

2

3
00 vr

r

m
Bg

rrr
×

−

−=
θβ

β
π

ν

 
 

gB
r

 in P is perpendicular to the plane formed by P and the path of the point mass; its 

orientation is defined by the rule of the corkscrew; and its magnitude is: 

 

θ
θβ

β
π

ν
sin..

)sin.1(

1
.

4

.

2

3
22

2

2
00 v

r

m
Bg

−

−=

 
 
If the speed of the mass is much smaller than the speed of light, this expression reduces 

itself  to:  

).(
4

.
3

0 vr
r

m
Bg

rrr
×=

π
ν

 

 

This non-relativistic result could also be obtained if one assumes that the displacement of 

the point mass during the time interval that the informatons need to move from the emitter 

to P can be neglected compared to the distance they travel during that period. 

 

3.5. The gravitational field of a point mass describing  a uniform rectilinear 

       motion 
 
A point mass m0, moving with constant velocity zevv

wr
.= along the Z-axis of an inertial frame, 

creates and maintains a cloud of informatons that are carrying both g- and β-information.  

That cloud can be identified with a time dependent continuum.  That continuum is called the 

gravitational field
•
 of the point mass.  It is characterized by two time dependent vectorial 

                                                           
•
 Also called: “gravito-electromagnetic” (GEM field) or “gravito-magnetic” field (GM field) 
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quantities: the gravitational field (short: g-field) gE
r

 and the gravitational induction (short: g-

induction) gB
r

. 

 
-  With N the density of the flow of informatons in P (the rate per unit area at which the  

    informatons  cross an elementary surface perpendicular to the direction of movement), 

    the g-field in that point is: 

 

r
r

m
sNE gg

rrw
.

)sin.1(

1
.

4
.

2

3
22

2

3
0

0

θβ

β
πη

−

−−==

 
  

   The orientation of gE
r

 learns that  the direction of the flow of g-information in P is not the 

   same as  the direction of the flow of informatons. 

 

-  With n, the density of the cloud of informatons in P (number of informatons per unit  

    volume), the g-induction in that point is: 

 

).(

)sin.1(

1
.

4

.
.

2

3
22

2

3
00 vr

r

m
snBg

rrrr
×

−

−==
θβ

β
π

ν
β

 

One can verify that: 

                                      1. 0=gEdiv
r

                               3.
t

B
Erot g

g ∂
∂

−=
r

r
 

                                      2. 0=gBdiv
r

                                 4.
t

E

c
Brot g

g ∂
∂

=
r

r
.

1
2

 

These relations are the laws of G.E.M. in the case of the gravitational field of a point mass 

describing a uniform rectilinear motion. 

 

If  cv << ,  the expressions for the g-field and the g-induction reduce to: 

r
r

m
Eg

rr
.

4 3
0

0

πη
−=                and               ).(

4

.
3
00 vr

r

m
Bg

rrr
×=

π
ν

 

 

3.6. The gravitational field of a set of point masses describing  uniform 

        rectilinear motions 

 

We consider a set of point masses m1,…,mi,…mn  that move with constant velocities 

ni vvv
rrr

,...,,...,1  
 in an inertial reference frame O.  This set creates and maintains a gravitational 

field that in each point of the space linked to O, is characterised by the vector pair ( gE
r

, gB
r

)
 
. 

-  Each mass mi continuously emits  g-information  and contributes with an amount giE
r

 to  
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    the  g-field at an arbitrary point P.  As in 2.2 we conclude that the effective g-field gE
r

 
in P 

    is   defined as:
 ∑= gig EE

rr
 

 
-  If it is moving, each mass mi emits also β-information, contributing to the g-induction in P 

   with an amount giB
r

.  It is evident that the β-information in the volume 

    element dV in P at each moment t is expressed by: 

 

∑ ∑= dVBdVB gigi ).().(
rr

 

 

   Thus, the effective g-induction gB
r

in P is: 

∑= gig BB
rr

 

 
The laws of G.E.M. mentioned in the previous section remain valid for the effective g-field 

and g-induction in the case of the gravitational field of a set op point masses describing a 

uniform rectilinear motion. 

 

3.7. The gravitational field of a stationary mass flow 

 

The term “stationary mass flow” indicates the movement of an homogeneous and 

incompressible fluid that, in an invariable way, flows relative to an inertial reference frame. 

 

The intensity of the flow in an arbitrary point P is characterised by the flow density GJ
r

.  The 

magnitude of this vectorial quantity equals the rate per unit area at which the mass flows 

through a surface element that is perpendicular to the flow in P.   The orientation of GJ
r

corresponds to the direction of that flow.  If v
r

 is the velocity of the mass element dVG .ρ  

that at the moment t flows through P, then:    vJ GG

rr
.ρ=  

 

So, the rate at which the flow transports - in the positive sense (defined by the orientation of 

the surface vectors dS  )  -  mass through an arbitrary surface ΔS,  is:  ∫∫
∆

=
S

GG dSJi .
r

 
We call Gi  the intensity of the mass flow through ΔS. 

 

Since a stationary mass flow is the macroscopic manifestation of moving mass elements  

dVG.ρ ,  it creates and maintains a gravitational field.  And since the velocity v
r

 of the mass 

element in each point is time independent, the gravitational field of a stationary mass flow 

will be time independent.  It is evident that the rules of 2.3 also apply for this time 

independent g-field: 
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0η
ρG

gEdiv −=
r

  
              and               0=gErot

r
  what implies: gg gradVE −=

r

 

 
One can prove

 (6)  
that the rules for the time independent g-induction are: 

 

0=gBdiv
r

  
what   implies  gg ArotB

rr
=

  
             and               Gg JBrot

rr
.0ν−=

 
 

 
This are the laws of G.E.M. in the case of  the gravitational field of a stationary mass flow. 

 

3.8. The gravitational field of an accelerated point mass. 

 

3.8.1. The g-spinvector of an informaton emitted by an accelerated point mass 

 

In fig 6 we consider a point mass  m  that, during a finite time interval, moves with constant 

acceleration  zeaa
rr

.=  relative to the inertial reference frame OXYZ.   At  the moment t = 0,  

m  starts - from rest - in the origin O, and at the moment t = t  it passes in the point P1 .  Its 

velocity is there defined by zz etaevv
rrr

... == ,  and  its position by tvtaz ..
2

1
..

2

1 2 == .  We 

suppose that the speed v  remains much smaller than the speed of light: 1<<
c

v
. 

 

 

                                                                      Z                                                              c
r

     ce
r

                                          

                                                               v
r

                                                ϕe
r

     
        θ∆  

                                                               P2    a
r

                   gs
r

   
               P                   

                                                                        θ               r
r

 

                                                               P1      m                  0r
r

                                      
ce⊥

r
 

                                                                                                       0θ                                                                                         

                                                               P0  

                                                                 O                                                          Y 

                                                                                                          

                                                             X                        Fig 6 

The informatons that during the infinitesimal time interval (t, t+dt) pass near the fixed point 

P (whose position relative to the moving mass m is defined by the time dependant position 

vector r
r

) have been emitted at the moment ttt ∆−=0 , when m - with velocity 

zz ettvevv
rrr

).(.00 ∆−==  - passed through P0 (whose position is defined by the time 

dependant position vector )(0 ttrr ∆−= rr
).   Δt, the time interval during which m moves from 
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P0  to P1 is the time that the informatons need to move - with the speed of light (c) - from P0  

to P  . We can conclude that 
c

r
t 0=∆ , and that  

c

r
av

c

r
tvttvv 00

0 .)()( −=−=∆−= . 

Between the moments  t = t0  and  t = t0 + Δt,  m moves from P0 to P1.  That movement can be 

considered as the resultant of  

  1. a uniform movement with constant speed )(0 ttvv ∆−=  and   

  2. a uniformly accelerated movement with constant acceleration a .  

 

1. In fig. 6,a, we consider the case of the point mass m  moving with constant speed 0v  

along the Z-axis.  At the moment  ttt ∆−=0    m passes in P0  and at the moment t  in 

'
1P :   tvPP ∆= .0

'
10  

                                                  
                                                 Z                                                         c

r
     'θ∆  

                                                                                                     P                  
                                                                                       gs

r
             

                                           0v
r

          'θ             'r
r

                                               

                                                         
 
                                           '

1P    m               0r
r

    
                                                                 
                                                  0θ  

 
                                            P0                                            Fig 6,a 

 

The informatons that, during the infinitesimal time interval (t, t + dt), pass near the 

point P - whose position relative to the uniformly moving mass m at the moment t is 

defined by the position vector 
'r
r

 - have been emitted at the moment t0 when m 

passed in P0.  Their  velocity vector c
r

 is on the line PP0 , their spin vector gs
r

 points 

to '
1P :   

c

r
vtvPP 0

00
'

10 . =∆=
 

 

2.
 

                                         Z                                                    
                                                                                                              c

r
      

                                                                                                                    "θ∆      

                                           "
2P                                 gs

r
                    P 

                                            a
r

         "θ               "r
r

                                               
                                                         
 
                                         "

1P         m                 0r
r

    
                                                                 
                                                      0θ  

 
                                            P0                                               Fig 6,b 
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In fig 6,b we consider the case of the point mass m starting at rest in P0 and moving 

with constant acceleration a  along the Z-axis.  At the moment  ttt ∆−=0   it is in P0 

and at the moment   t   in  "
1P :   

2"
10 ).(.

2

1
taPP ∆=    

 

The informatons that during the infinitesimal time interval (t, t + dt) pass near the 

point P (whose position relative to the uniformly accelerated mass m is - at the 

moment t - defined   by the position vector "r
r

) have been emitted at the moment t0 

when m was in P0. Their velocity vector c
r

 points to P0 , their spinvector gs
r

 to "
2P .     

 

To determine the position of "
2P ,  we consider the trajectories of the informatons 

that at the moment  t0  are emitted in the direction of P, relative to the accelerated 

reference frame OX’Y’Z’ that is anchored to m. (fig 6,c; 02
θπα −= )                                                             

                                                         Z’                                 

                                                                      gs
r

           P 

                                                        "
2P  

                                                                        α  

                                                          m                                                                Y’ 

Fig. 6,c 

Relative to OX’Y’Z’  these informatons are accelerated with an amount a
r− : they 

follow a parabolic trajectory defined by the equation: 

2
22

'.
cos.

.
2

1
'.' y

c

a
ytgz

α
α −=  

 

At the moment t = t0 + Δt, when they pass in P, the tangent line to that trajectory 

cuts the Z’-axis in the point "
2P , that is defined by: 

2

2
02' ..

2

1
).(.

2

1
"
2 c

r
ataz

P
=∆=

 

That means that the spinvectors of the informatons that at the moment t pass in P,  

point to a point 
"

2P  on the Z-axis that has a lead of 

2

2
02"

2
"

1 ..
2

1
).(.

2

1

c

r
ataPP =∆=  

on  "
1P ,  the actual position of the mass m.   

And  since 
"

2
"

1
"

10
"

10 PPPPPP += ,    we conclude that:  
2

2
0"

20 .
c

r
aPP =  
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In the inertial reference frame OXYZ (fig 6), gs
r

points to the point P2 on the Z-axis 

determined by the superposition of the effect of the velocity (1) and the effect of the 

acceleration (2): 

2
020

0"
20

'
1020 .. r

c

a
r

c

v
PPPPPP +=+=

 
 

The carrier line of the spinvector gs
r

 of an informaton that - relative to het inertial frame 

OXYZ - at the moment t passes near P forms a “characteristic angle” θ∆ with the carrier line 

of its velocity vector c
r

, that can be deduced by application of the sine-rule in triangle PPP 20  

(fig 6): 

0

0

20

)sin()sin(

rPP

θθθ ∆+=∆
 

We conclude:              )sin(..)sin(.)sin( 0020
0 θθθθθ ∆++∆+=∆ r

c

a

c

v
 

From the fact that P0P1 - the distance travelled by m during the time interval Δt - can be 

neglected relative to P0P - the distance travelled by light in the same interval - it follows that 

θθθθ ≈∆+≈ 00  and that rr ≈0 .  So: 

θθθ sin..sin.)sin(
2

0 r
c

a

c

v +≈∆
 

 

We can conclude that the spinvector gs
r

of an informaton that at the moment t passes near 

P, has a component in the direction of c
r

 - its velocity vector -  and a component 

perpendicular to that direction.  It is evident that: 

cgcgcgcgg er
c

a

c

v
sesesess ⊥⊥ +−−≈∆−∆−= rrrrr

).sin..sin..(.).sin(.).cos(.
2

0 θθθθ
 

 

3.8.2. The gravitational field of an accelerated point mass 

 

The informatons that, at the moment t, are rushing near the fixed point P - defined by the 

time dependent position vector r
r

 - are emitted when m was in P0 (fig 6).  Their velocity c
r

 is 

on the same carrier line as PPr 00 =r
.  Their g-spin vector is on the carrier line P2P.   According 

to 3.8.1, the characteristic angle θ∆ - this is the angle between the carrying lines of gs
r

 and 

c
r

 - has two components: 

-  a component 'θ∆
 
related to the velocity of m at the moment (

c

r
t 0− ) when the considered 

    informatons were emitted.  In the framework of our assumptions, this component is: 

θθ sin.
)(

)'sin(
c

c

r
tv −

=∆
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-   a component "θ∆  related to the acceleration of m at the moment when they were 

     emitted.  This component is, in the framework of our assumptions: 

θθ sin.
).(

)"sin(
2c

r
c

r
ta −

=∆
 

The macroscopic effect of the emission of g-information by the accelerated mass m is a 

gravitational field ( gg BE
rr

, ).  We introduce the reference system ( ϕeee cc

rrr
,, ⊥ )  (fig 6). 

 

1. gE
r

, the field  in P, is defined as the density of the flow of g-information in that point.  

That density is the rate at which g-information per unit area crosses in P the 

elementary surface perpendicular to the direction of movement of the informatons.  

So gE
r

 is the product of N, the density of the flow of informatons in P,  with gs
r

, their 

spinvector:  

gg sNE
rr

.= . 

 

According to the postulate of the emission of informatons, the magnitude of gs
r

 is 

the elementary g-information quantity:  

1360

0

10.18,6
.

1 −−== sm
K

sg η
 

and the density of the flow of informatons in P  is:  

222
0 ..4

.

..4..4 r

mK

r

N

r

N
N

πππ
=≈=

&&
. 

Taking this into account and knowing that 02
0.

1 ν
η

=
c

,  we obtain: 

 

ccg e
c

r
ta

r

m

c

r
tv

rc

m
e

r

m
E ⊥−+−−−= rrr

}.sin).(.
..4

.
sin).(.

....4
{.

...4
0

2
0

2
0

θ
π

νθ
ηπηπ

 

 

2. gB
r

, the gravitational induction in P, is defined as the density of the cloud of β-

information in that point. That  density is the product of n, the density of the cloud 

of informations in P (number per unit volume) with βs
r

, their β-index: 

βsnBg

rr
.=

 
 

The β-index of an informaton characterizes the information it carries about the state 

of motion of its emitter;  it is defined as: 

c

sc
s g

rr
r ×

=β
 

 

And the density of the cloud of informatons in P is related to N, the density of the 

flow of informatons in that point by:   
c

N
n =
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So:                                 
22

).(
..

c

Ec

c

sNc

c

sc

c

N
snB ggg

g

rrrrrr
rr ×

=
×

=
×

== β  

 

And with: ccg e
c

r
ta

r

m

c

r
tv

rc

m
e

r

m
E ⊥−+−−−= rrr

}.sin).(.
..4

.
sin).(.

....4
{.

...4
0

2
0

2
0

θ
π

νθ
ηπηπ

,  

we obtain: 

 

ϕθ
π

νθ
π

ν
e

c

r
ta

rc

m

c

r
tv

r

m
Bg

rr
}.sin).(.

...4

.
sin).(.

..4

.
{ 0

2
0 −+−−=

 
 

 

IV. The Laws of the gravitational Field - The Laws of G.E.M. 

 

In the space linked to an inertial reference frame O, the gravitational field  is characterised 

by two time dependent vectors: the (effective) g-field gE
r

 and the (effective) g-induction gB
r

.  

In an arbitrary point P, these vectors are the results of the superposition of the contributions 

of the various sources of informatons (the masses) to respectively the density of the flow of 

g-information and to the cloud of β-information in P: 

∑= gg sNE
rr

.           and         ∑= βsnBg

rr
.  

 
The informatons that - at the moment t - pass near P with velocity c

r
 contribute with an 

amount ( gsN
r

. ) to the instantaneous value of the g-field  and with an  amount ( βsn
r

. ) to the 

instantaneous value of the g-induction in that point.   

 

-  gs
r

 and βs
r

 respectively are their g-spin and their β-index.  They are linked by 

    the relationship:   

c

sc
s g

rr
r ×

=
β

 
-  N  is the instantaneous value of the density of the flow of informatons with velocity c

r
 at P 

   and n is the instantaneous value of the density of the cloud of those informatons in that 

   point.  N  and n are linked by the relationschip: 

 

c

N
n =

 
 

4.1.  Relations between gE
r

 and gB
r

 in  a matter free point of a gravitational 

         Field 

 

In each point where no matter is located - where ρG(x, y,z;t) = );,,( tzyxJG

r
= 0 - the following 

statements are valid. 
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1. In a matter free point P of a gravitational field, the spatial variation of ����� obeys the  

     law: 

0=gEdiv
r

 

 

This statement is the expression of the law of conservation of g-information.  The fact that 

the rate at which g-information flows inside a closed empty space must be equal to the rate 

at which it flows out, can be expressed as: 

 

0. =∫∫ dSE
S

g

r

 

So (theorem of Ostrogradsky)
 (4)

:   

0=gEdiv
r

 
 

 

2.  In a matter free point P of a gravitational field, the spatial variation of gB
r

 obeys the 

     law: 

0=gBdiv
r

 

 

This statement is the expression of the fact that the β-index of an informaton is always 

perpendicular to its g-spin vector gs
r

 and to its velocity c
r

. 

 

 

                                                                                 Y 

 

                                                                                                   

                                                                                                                       Q 

                                                                                                 c
r
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r
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                                                              βs
r

 

                                                                   Z 

Fig 7 

 

In fig 7, we consider the flow of informatons that - at the moment t - pass with velocity c
w

 in 

the vicinity of the point P.  An informaton that at the moment t passes in P is at the moment 

(t + dt) in Q:   PQ = c.dt 

 

In P, the instantaneous value of the density of the considered flow of informatons is 

represented by N, the instantaneous value of the density of the cloud that they constitute by 

n, and the instantaneous value of their characteristic angle by θ∆ .  We introduce the 

coordinate system PXYZ: 

                    xgg ess
rr

.−=                     and                    zg
g es

c

sc
s

r
rr

r
).sin(. θβ ∆=

×
=   
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The contribution of the considered informatons to the g-induction in P is:  βsnBg

rr
.=  

 

From mathematics
 (4)

 we know:   

 

)(.).().( βββ sdivnsngradsndivBdiv g

rrvr
+==

 
 

 

• 0).( =βsngrad
r

 because grad(n) is perpendicular to βs
r

.  Indeed n changes only in the 

direction of the flow of informatons, so grad(n) has the same orientation as c
r

: 

 

c

c

PQ

nn
ngrad PQ

r

.)(
−

=
 

 

 

•  0)(. =βsdivn
r

.  According to the definition: 
dV

dSs
sdiv ∫∫=

.
)(

β
β

r
r

.   We calculate the 

double integral over the closed surface S  formed by the infinitesimal surfaces  

dS = dz.dy  which are in P and in Q perpendicular to the X-axis and by the tube which 

connects the edges of these surfaces.  dV is the infinitesimal volume enclosed by S.   

It is obvious that: 

0
.

)( == ∫∫
dV

dSs
sdiv

β
β

r
r

 

Both terms of the expression of gBdiv
r

 are zero, so 0=gBdiv
r

, what implies (theorem of 

Ostrogradsky) that for every closed surface S in a gravitational field:  

 

0. =∫∫ dSB
S

g

r

 
 

 

3.  In a matter free point P of a gravitational field, the spatial variation of gE
r

 and the 

     rate at which gB
r

 is changing are connected by the relation:  

t

B
Erot

g
g ∂

∂
−=

r
r

 

 

This statement is the expression of the fact that any change of the product βsn
r
.

 
in a point of 

a gravitational field is related to a variation of the product gsN
r

.  in the vicinity of that point. 

 

We consider again gE
r

 and gB
r

, the contributions to the g-field and to the g-induction in the 

point P of the informatons which - at the moment t - pass with velocity c
r

in the vicinity of  

that point (fig 7).  

xgg esNsNE
g

rrr
... −==         and         zg

g
g esn

c

sc
nsnB

r
wr

rr
).sin(.... θβ ∆=

×
==
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We investigate the relationship between
 

)(.})({ ggg srotNsNgradErot
rrr

+×=            and            
t

s
ns

t

n

t

Bg

∂
∂

+
∂
∂=

∂
∂ β

β

r
w

r

..
 

• The term { gsNgrad
r×)( } describes the component of gErot

r
 caused by the spatial 

variation of N in the vicinity of P when θ∆ remains constant. 

 

N has the same value in all points of the infinitesimal surface that, in P, is 

perpendicular to the flow of informatons.  So grad(N) is parallel to c
r

 and its 

magnitude is the increase of the magnitude of N per unit length.   

 

With   NP = N,    NQ = N + dN    and   PQ = c.dt ,   grad(N) is determined by:       

 

c

c

dtc

dN

c

c

PQ

NN
Ngrad PQ

rr

.
.

)( =
−

=    

      

      It follows:                          βs
dtc

dN
s

c

c

dtc

dN
sNgrad gg

rr
r

r
.

.
.

.
)( =×=×

 
 

 

      From the fact that the density of the flow of informatons in Q at the moment t  is 

      equal to the density of that flow in P at the moment (t - dt), it follows: 

 

      If  NP(t) = N,  then  NP(t - dt) = NQ(t) = N + dN       

                

      The rate at which NP  changes at the moment t is:    

 

                                              
dt

dN

dt

dttNtN

t

N PP −=−−=
∂
∂ )()(

 
 

            And since:  n
c

N = :           
t

n

t

N

cdt

dN

c ∂
∂−=

∂
∂−= 11

 

 

            We conclude (I):   

βs
t

n
sNgrad g

rr
.)(

∂
∂−=×

 
 

 

• The term { )(. gsrotN
r

} describes the component of gErot
r

 caused by the spatial 

variation of θ∆   - the orientation of the g-spinvector in the vicinity of P - when N 

remains constant.  At the moment t, ( θ∆ )P  - the characteristic angle of the 

informatons that pass in P - differs from ( θ∆ )Q - the characteristic angle of the 

informatons that pass in Q.  If  ( θ∆ )P  =  θ∆ ,   than   ( θ∆ )Q = θ∆ + d( θ∆ )   (fig 8). 
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r
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r
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r
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Fig 8 

 

              For the calculation of )( gsrot
r

,  we calculate dlsg .∫
r

 along the closed path PQqpP 

             that encircles the area dS = PQ.Pp = c.dt.Pp.  (PQ and qp are parallel to the flow of 

             the informatons, Qq and pP are perpendicular to it.      

 

 

z
gg

z

g

g e
Ppdtc

PpsQqds
Ne

dS

dls
NsrotN

rr
r

r
.

..

).sin(.)}.(sin{
..

.
.)(. . θθθ ∆−∆+∆

== ∫
 

 

     

  From the fact that the characteristic angle of the informatons  in Q at the moment t 

       is  equal to the characteristic angle of the informatons in P at the moment (t - dt), it  

       follows: 

 

        If  ( θ∆ )P(t) = θ∆ ,   then  ( θ∆ )P(t - dt) = ( θ∆ )Q(t) = θ∆ + d( θ∆ ) 

 

     The rate at which sin( θ∆ ) in P changes at the moment t, is: 

 

dt

d

dt

d

t

)}{sin()}(sin{)sin()}{sin( θθθθθ ∆−=∆+∆−∆=
∂

∆∂

 
 

            And since  N = c.n , we obtain (II):  

 

t

s
nesn

tdtc

d
sNsrotN zggg ∂

∂
−=∆

∂
∂=∆−∆+∆= βθθθθ

r
rr

.}).sin(..{
.

)sin()}(sin{
..)(.

 
 

Combining the results (I) and (II), we obtain: 

t

B

t

s
ns

t

n
srotNsNgradErot g

g
g

ggggg ∂
∂

−=
∂

∂
+

∂
∂

−=+×=

rr
rrrr

)..()(.)( β
β

 
 

The relation 
t

B
Erot

g
g ∂

∂
−=

r
r

 implies (theorem of Stokes
 (4)

):  In a gravitational field, the rate 

at which the surface integral of gB
r

 over a surface S changes is equal and opposite to the line 

integral of gE
r

 over its boundery L: 
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t
dSB

t
dS

t

B
dlE b

S

g

S

g
g ∂

Φ∂
−=

∂
∂−=

∂
∂

−= ∫∫∫∫∫ ...
r

r
r

 

 

The orientation of the surface vector dS  is linked to the orientation of the path on L by the 

“rule of the corkscrew”.  dSB
S

gb .∫∫=Φ
r

 is called the “b-flux through S”. 

 

4.  In a matter free point P of a gravitational field, the spatial variation of gB
r

 and the 

     rate at which gE
r

 is changing are connected by the relation:  

t

E

c
Brot

g

g ∂
∂

=

r
r

2

1
 

 

This statement is the expression of the fact that any change of the product gsN
r

.  in a point of 

a gravitational field is related to a variation of the product gsn
r
.  in the vicinity of that point. 

 

We consider again gE
r

 and gB
r

, the contributions to the g-field and to the g-induction in a 

point P, of the informatons that - at the moment t - pass near P with velocity c
r

 (fig 8).  

 

xgg esNsNE
g

rrr
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g esn
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And we note first that xgg ess
rr
.−=  and that  yg

g e
t

s
t

s w
r

.
)(

.
∂
∆∂=

∂
∂ θ

 

 

We investigate the relationship between
 

)(.})({ ββ srotnsngradBrot g

rrr
+×=         and         

t

s
Ns

t

N

t

E g
g

g

∂
∂

+
∂
∂=

∂
∂ r

r

r

..
 

 

1°. First we calculate gBrot
r

: 

 

)(.})({ ββ srotnsngradBrot g

rrr
+×=  

 

• The term { βsngrad
r×)( } describes the component of gBrot

r
 caused by the spatial 

variation of n in the vicinity of P when θ∆  remains constant. 

 

n has the same value in all points of the infinitesimal surface that, in P, is 

perpendicular to the flow of informatons.  So grad(n) is parallel to c
r

 and its 

magnitude is the increase of the magnitude of n per unit length.   

 

With  nP = n,    nQ = n + dn    and   PQ = c.dt ,   grad(n) is determined by:       
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c

c

dtc

dn

c

c

PQ

nn
ngrad PQ

rr

.
.

)( =
−

=    

 

The vector { βsngrad
r×)( } is perpendicular to het plane determined by c

r
 and βs

r
.  So, 

it lies in the XY-plane and is there perpendicular to c
r

.  Taking into account the 

definition of vectorial product, we obtain (fig 8): 

 

βsngrad
r×)( = cgc es

dtc

dn
es

dtc

dn
⊥⊥ ∆−=− rr

).sin(..
.

..
.

θβ
 

 

      From the fact that the density of the cloud of informatons in Q at the moment t  is 

      equal to the density of that cloud in P at the moment (t - dt), it follows: 

 

      If  nP(t) = n,  then  nP(t - dt) = nQ(t) = n + dn       

                 

      The rate at which nP  changes at the moment t is:   
  

dt

dn

dt

tntn

dt

dttntn

t

N

ct

n QPPP −=
−

=−−=
∂
∂=

∂
∂ )()()()(

.
1

 
 

      And, taking into account that 
c

N
n = , we obtain (I) 

βsngrad
r×)( = cgcg es

t

N

c
es

t

n

c ⊥⊥ ∆
∂
∂=∆

∂
∂ rr

).sin(...
1

).sin(...
1

2
θθ

 
 

• The term { )(. βsrotn
r

} is the component of gBrot
r

 caused by the spatial variation of 

βs
r

   in the vicinity of P  when n remains constant.  The fact that PQ ss ββ
rr ≠

 
at the 

moment t, follows from the fact that, at that moment, ( θ∆ )P  -  the characteristic 

angle of the informatons that pass in P - differs from ( θ∆ )Q - the characteristic angle 

of the informatons that pass in Q.    If  ( θ∆ )P  = θ∆ ,  than   ( θ∆ )Q = θ∆  + d( θ∆ ).   
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From the definition of Frot
r

(4)
, it follows (fig 9): 

       

cgc
gg

c e
dtc

d
se

Ppdtc

qQdsPps
e

dS

dls
srot ⊥⊥⊥
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∆+∆−∆

== ∫ rrr
r

r
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.

..

)}.()sin{(.).sin(.
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)(
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       From the fact that the characteristic angle of the informatons  in Q at the moment t 

       is  equal to the characteristic angle of the informatons in P at the moment (t - dt), it  

       follows that if  ( θ∆ )P(t) = θ∆ ,   then  ( θ∆ )P(t - dt) = ( θ∆ )Q(t) = θ∆ + d( θ∆ ) 

  

             The rate at which sin( θ∆ ) in P changes at the moment t, is:  

 

dt

d

dt

d

t

)}{sin()}(sin{)sin()}{sin( θθθθθ ∆−=∆+∆−∆=
∂

∆∂

 
 

      Further : 
tt ∂

∆∂∆=∆
∂
∂ )(

).cos()}{sin(
θθθ            and            

c

N
n =  

 

Finally, we obtain (II):   cg e
t

sN
c

srotn ⊥∂
∆∂∆= vr

.
)(

).cos(...
1

)(.
2

θθβ
 

 

Combining the results (I) and (II), we obtain: 
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2°.  Next we calculate  
t

Eg

∂
∂
r

:  
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Taking into account:    

 

ccx eee ⊥∆−∆= rrr
).sin().cos( θθ

            
and

        
ccy eee ⊥∆+∆= rrr

).cos().sin( θθ
 

 

we obtain:  
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From the first law of the gravitational field, it follows that the component in  the direction of 

ce
r

 of 
t

Eg

∂
∂
r

 is zero.   Indeed. 
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• We know (4.1.3):  c
t

N

c
Ngrad

r
..

1
)(

2 ∂
∂−= ,  so:  

)cos(..
1

).( θ∆
∂
∂= gg s

t

N

c
sNgrad
r

     (III) 

 

• We determine
dV

dSs
sdiv

g

g
∫∫=

.
)(

r
r

 (IV).  For that purpose, we calculate the double 

integral over the closed surface S formed by the infinitesimal surfaces dS which are in 

P and Q  perpendicular to the flow of informatons (perpendicular to c
r

) and by the 

tube which connects the edges of these surfaces (and that is parallel to c
r

).  

      dV =c.dt.dS  is the infinitesimal volume enclosed by S: 
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So (IV): 
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 According to the first law of the gravitational field (V): 

0)(.).().( =−−=−=− gggg sdivNsNgradsNdivEdiv
rrrr

 

Substitution of (III) and (IV) in (V): 

0
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So, the component of 
t

Eg

∂
∂
r

In the direction of ce⊥
r

 is zero, and: 
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3°. Conclusion:  From 1° en 2° follows:

    

t

E

c
Brot g

g ∂
∂

=

r
r

2

1

 

 

This relation  implies (theorem of Stokes): In a gravitational field, the rate at which the 

surface integral of gE
r

 over a surface S changes is proportional to the line integral of gB
r

 over 

its boundery L: 
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The orientation of the surface vector dS  is linked to the orientation of the path on L by the 

“rule of the corkscrew”.  dSE
S

ge .∫∫=Φ
r

 is called the “e-flux through S”. 

 

4.2.  Relations between gE
r

 and gB
r

 in  a point of a gravitational field  

 

The volume-element in a point P inside a mass continuum is in any case an emitter of g-

information and, if the mass is in motion, also a source of β-information.  According to 2.3 , 

the instantenuous value of Gρ  - the mass density in P - contributes to the instantaneous 

value of gEdiv
r

in that point with an amount 
0η

ρG− ; and according to 3.7 the instantaneous 

value of GJ
r

 - the mass flow density - contributes to the instantaneous value of gBrot
r

in P 

with an amount GJ
r

.0ν−  (3.7). 

 

Generally, in a point of a gravitational field - linked to an inertial reference frame O - one 

must take into account the contributions of the local values of );,,( tzyxGρ  and of 

);,,( tzyxJG

r
 .  This results in the generalization and expansion of the laws in a mass free 

point.  By superposition we obtain: 

  

1. In a point P of a gravitational field, the spatial variation of ����� obeys the  law: 

0η
ρG

gEdiv −=
r

 

 

In integral form:     dVdSE
G

G

S

gg ∫∫∫∫∫ −==Φ ..
1

.
0

ρ
η

r

 
 

 

2.  In a point P of a gravitational field, the spatial variation of gB
r

 obeys the law: 

0=gBdiv
r

 

 

In integral form:      0. ==Φ ∫∫ dSB
S

gb

r

 
 

3.  In a point P of a gravitational field, the spatial variation of gE
r

 and the rate at which gB
r

 

is changing are connected by the relation:  

t

B
Erot

g
g ∂

∂
−=

r
r
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In integral form:      
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4.  In a point P of a gravitational field, the spatial variation of gB
r

 and the rate at which gE
r

 

is changing are connected by the relation:  

G
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In integral form: 
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These are the laws of Heaviside-Maxwell or the laws of gravitoelectromagnetism. 

 

V. The interaction between masses  

 
5.1. The interaction between masses at rest 

 
We consider a set of point masses anchored in an inertial reference frame O.  They create 

and maintain a gravitational field that is completely determined by the vector gE
r

 in each 

point of the space linked to O.  Each mass is “immersed” in a cloud of g-information.  In 

every point, except its own anchorage, each mass contributes to the construction of that 

cloud. 

 

Let us consider the mass m anchored in P.  If the other masses were not there, then m would 

be at the centre of a perfectly spherical cloud of g-information.  In reality this is not the case: 

the emission of g-information by the other masses is responsible for the disturbance of that 

“characteristic symmetry”.  Because gE
r

 in P  represents the intensity of the flow of g-

information send to P by the other masses, the extent of disturbance of that characteristic 

symmetry in the direct vicinity of m is determined by gE
r

 in P.   

If it was free to move, the point mass m could restore the characteristic symmetry of the g-

information cloud in his  direct vicinity:  it would suffice to accelerate with an amount 

gEa
rr = .  Accelerating in this way has the effect that the extern field disappears in the origin  

of the reference frame anchored to m.  If it accelerates that way, the mass becomes “blind” 

for the g-information send to P by the other masses, it  “sees” only its own spherical g-

information cloud. 

 

These insights are expressed in the following postulate. 
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 5.1.1.  The postulate of the gravitational action 

 

A free point mass m in a point of a gravitational field acquires an acceleration gEa
rr =  so that 

the characteristic symmetry of the g-information cloud in its direct vicinity is conserved.  A 

point mass who is anchored in a gravitational field cannot accelerate.  In that case it tends  

to move.  We can conclude that: 

 
A point mass anchored in a point of a gravitational field is subjected to a tendency to move in 

the direction defined by gE
r

,  the g-field in that point.  Once the anchorage is broken, the 

mass acquires  a vectorial acceleration a
r

 that equals  gE
r

. 

 
 

5.1.2. The concept force - the gravitational force 

 
Any disturbance of the characteristic symmetry of the cloud of g-information  around a point 

mass gives rise to an action aimed at the destruction of that disturbance. 

A point mass m, anchored in a point P of a gravitational field, experiences an action because 

of that field, an action that is compensated by the anchorage. 

 

-  That action is proportional to the extent to which the characteristic symmetry of the own  

    gravitational field of m in the  vicinity  of P is disturbed by the extern g-field, thus to 

    the  value of gE
r

 in P. 

-  It depends also on the magnitude of m.  Indeed, the g-information cloud created and 

   maintained by m is more compact if m is greater.  That implies that the disturbing effect  

   on the spherical symmetry around m  by the extern g-field gE
r

  is smaller when m is  

   greater.   Thus, to impose the acceleration gEa
rr = , the action of the gravitational field on 

   m  must be greater when m is greater. 

 

We conclude: The action that tend to accelerate a point mass m in a gravitational field must 

be proportional to gE
r

, the g-field to which the mass is exposed; and to m, the magnitude of 

the mass. 

 

We represent that action by gF
r

 
and we call this vectorial quantity “the force developed by 

the g-field on the mass”  or the gravitational force on m.  We define it by the relation:   

gg EmF
rr

.=
 

 
A mass anchored in a point P cannot accelerate, what implies that  the effect of the 

anchorage must compensate the gravitational force.  This means that the disturbance of the 

characteristic symmetry around  P  by gE
r

 
must be cancelled by the g-information flow 

created and maintained by the anchorage.  The density of that flow in P must be equal and 

opposite to gE
r

.  It cannot be otherwise than that the anchorage exerts an action on m that 

is exactly equal and opposite to the gravitational force.  That action is called a reaction force. 
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This discussion leads to the following insight: Each phenomenon that disturbs the 

characteristic symmetry of the cloud of g-information around a point mass, exerts a force on 

that mass.   

Between the gravitational force on a mass m and the local field strength exists the following 

relationship:  
 

m

F
E g

g

r
r

=
 

 

So, the acceleration imposed to the mass by the gravitational force is:    
m

F
a g

r

r =  

Considering that the effect of the gravitational force is actually the same as that of each 

other force we can conclude that the relation between a force F
r

and the acceleration a
r

  

that it imposes to a free mass m is:     amF
rr

.=  
 

5.1.3.  Newtons universal law of gravitation 

 
In fig 10 we consider two point masses m1 and m2 anchored in the points P1 and P2 of an 

inertial frame. 

 

m1  creates and maintains a gravitational field that in P2 is defined by the g-field:  

 

12
0

1
2 .

..4
e

m
Eg

rr

ηπ
−=

 
This field exerts a gravitational force on m2: 

 

12
0

21
2212 .

..4

.
. e

mm
EmF g

rrr

ηπ
−==

 
 

 
 
                                                                    R                              P2                 12e

r
 

                                                                                  12F
r

               m2 

 

                                                     21F
r

 
 
                                 m1     
                                          P1 

                  21e
r

                                                  Fig 10 

 
 

In a similar manner we find 21F
r

: 
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This is the mathematical formulation of Newtons universal law of gravitation. 

 

5.2. The interaction between moving masses 

 

We consider a number of point masses moving relative to an inertial reference frame O.  

They create and maintain a gravitational field that in each point of the space linked to O is 

defined by the vectors gE
r

 and gB
r

.  Each mass is “immersed” in a cloud of informatons 

carrying both g- and β-information.  In each point, except its own position, each mass 

contributes to the construction of that cloud.  Let us consider the mass m that, at the 

moment t, goes through the point P with velocity v
r

.  
 
-  If the other masses were not there, the g-field in the vicinity of m (the “eigen” g-field of m)  

   should be symmetric relative to the carrier line of the vector v
r

.  Indeed, the g-spin vectors 

   of the informatons emitted by m during the interval (t - Δt, t + Δt) are all directed to that 

   line.   In reality that symmetry is disturbed by the g-information that the other masses send 

   to P. gE
r

, the instantaneous value of the g-field in P, defines the extent to which this 

   occurs. 

 
-  If the other masses were not there, the β-field in the vicinity of m (the “eigen” β-field of m)  

    should “rotate” around the carrier line of the vector v
r

. The vectors of the vector field 

    defined by the vector product of v
r

 with the g-induction that characterizes the “eigen” β- 

    field of m,  should - as gE
r

 - be symmetric relative to the carrier line of the vector v
r

.  In 

    reality this symmetry is disturbed by the β-information send to P by the other masses.  The 

    vector product )( gBv
rr ×  of the instantaneous values of the  velocity of m and of the g- 

    induction in P,  defines the extent to which this occurs. 

 
So, the characteristic symmetry of the cloud of information around a moving mass (the 

“eigen” gravitational field) is disturbed by gE
r

 regarding the “eigen” g-field; and by ( gBv ×r ) 

regarding the “eigen” β-field.  If it was free to move, the point mass m could restore the 

characteristic symmetry in its direct vicinity by accelerating with an amount 

)(' gg BvEa
rrrr ×+=  relative to its “eigen” inertial reference frame

*
 O'.  In that manner it 

would become “blind” for the disturbance of symmetry of the gravitational field in its direct 

vicinity.  

 

These insights form the basis of the following postulate. 

 

 

 

                                                           
*
  The “eigen” inertial reference frame O’ of the point mass m is the reference frame that at the 

   moment t moves relative to O  with the same velocity as m. 
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5.2.1. The postulate of the gravitational action 

 

A point mass m, moving with velocity v
r

 in a gravitational field ( gg BE
rr

, ), tends to become 

blind for the influence of that field on the symmetry of its “eigen” field.  If it is free to move, it 

will accelerate relative to its eigen inertial reference frame  with an amount 'a
r

: 

 

)(' gg BvEa
rrrr ×+=

 
 

5.2.2. The gravitational force 

 

The action of the gravitational field ( gg BE
rr

, ) on a point mass that is moving with velocity v
r

relative to the inertial reference frame O,  is called the gravitational force GF
r

 on that mass.  

In extension of  5.1.2  we define GF
r

 
as: 

 

[ ])(.0 ggG BvEmF
rrrr

×+=  

 
m0  is the rest mass of the point mass: it is the mass that determines the rate at which it 

emits  informatons in the space linked to O. 

 
The acceleration 'a

r
 of  the point mass relative to the eigen inertial reference frame O’ can 

be decomposed in a tangential ( '
Ta
r

) and a normal component (
'
Na
r

). 

TTT eaa
rr

.'' =             and             NNN eaa
rr
.'' =

 

Te
r

 and Ne
r

 are the unit vectors, respectively along the tangent and along the normal to the 

path of the point mass in O’ (and in O).  

We express '
Ta  en 

'
Na

 
in  function of the characteristics of the motion in the reference 

system O:              
dt

dv
aT .

)1(

1

2

3
2

'

β−
=               and              

2

2
'

1. β−
=

R

v
aN  

 (If R is the curvature of the path in O, the curvature  in O’  is 21 β−R .) 

The gravitational force is:


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Finally, with:        pv
m rr =
−

.
1 2

0

β
 

We obtain:                                                        
dt

pd
FG

r
r

=
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p
r

 is the linear momentum of the point mass relative to the inertial reference frame O.  It is 

the product of its relativistic mass 

2

2

0

1
c

v

m
m

−

=  with its velocity v
r

 in O.  

 

The linear momentum of a moving point mass is a measure for its inertia, for its ability to 

persist in its dynamic state. 

5.2.3. The equivalence mass-energy 

 
The instantaneous value of the linear momentum vmp

rr
.=  of the point mass m0, that freely 

moves relative to the inertial reference frame O, and the instantaneous value of the force F
r

 
that acts on it, are related by:  

dt

pd
F

r
r

=
 

The elementary vectorial displacement rd
r

of m0 during the elementary time interval dt is: 

 
dtvrd .

rr =  
 

And the elementary work done by F
r

during dt is
 (7)

:  
  

pdvdtvFdrFdW
rrrrr

.... ===  
 

With v

c

v

m
vmp

rrr
.

)(1

.
2

0

−
== ,  this becomes:  

).(.

)(1)(1

.. 22

2

0

2

3

2

0 cmdc

c

v

m
d

c

v

dvvm
dW =



















−
=






 −

=

 
 

The work done on the moving point mass equals, by definition,  the increase of the energy of 

the mass.  So, d(m.c
2
)  is the increase of the energy of the mass and  m.c

2
  is the energy 

represented by the mass.  

 

We conclude: A point mass with relativistic mass m is equivalent to an amount of energy of 

m.c
2
. 

 

5.2.4. The interaction between two uniform linear moving point masses 

 

5.2.4.1. The interaction between two moving point masses according to S.R.T. 

 

Two material points with rest masses m1 and m2 (fig 11) are anchored in the inertial frame O’ 

that is moving relative to the inertial frame O with constant velocity zevv
rr

.= .  The distance 

between the masses is R. 
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                                                                  Z=Z’ 

                                                                       v
r

 

                                                                                               R 

                                                                     O’              21F
r

       12F
r

                          Y’ 

                                                                            m1                                                         m2 

 

                                          X’                         O                                                             Y 

                                                                   

                            

                                            X                                       Fig 11 

 

In O’ the masses are at rest, they don’t move.  According to Newton’s law of universal 

gravitation, they exert on each other equal but opposite forces: 

2
21

0
2

21.'
21

'
12

.
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..4
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.'

R

mm

R

mm
GFFF

ηπ
====

 
 

In O both masses are moving with constant speed v  in the direction of the Z-axis.   From the 

transformation equations between an inertial frame O and another inertial frame O’, in 

which a point mass experiencing a force F’ is instantaneously at rest
(5)

, we can immediately 

deduce the force  F  that the point masses exert on each other in O:  

22
2112 1'.)(1'. β−=−=== F

c

v
FFFF

 

 

5.2.4.2. The interaction between two moving point masses according to G.E.M. 

 

In 3.5, it is shown that the gravitational field ( gg BE
rr

, ) of a particle with rest mass m0 that is 

moving with constant velocity zevv .=r  along the Z-axis of an inertial frame O (fig 11) is 

determined by: 
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with 
c

v=β , the dimensionless speed of m0.  One can verify that these expressions satisfy 

the laws of G.E.M. 

 

In the inertial frame O, the masses m1 and m2 are moving in the direction of the Z-axis with 

speed v .  m2  moves through the G.E.M. field generated by m1,  and m1  moves through that 

generated by m2. 
 

According the above formulas, the magnitude of the G.E.M. field created and maintained by 

m1  at the position of m2 is determined by: 
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And according to the force law [ ])(.0 ggG BvEmF
rrrr

×+= ,  12F , the magnitude of the force 

exerted by the gravitaltional field ( 22, gg BE
rr

) on m2  - this is the attraction force of m1 on m2 - 

is: 

)..( 22212 gg BvEmF −=
 

 

After substitution:              2'
21

2
2
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0
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In the same way we find:  2'
12

2
2

21

0
21 1.1..

4

1 ββ
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R
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F

 

We conclude that the moving masses attract each other with a force:  

 

2
2112 1'. β−=== FFFF

 

 

This result  perfectly agrees with that based on S.R.T. (§5.2.4.1).   

 

We can also conclude that the component of the gravitational  force due to the g-induction 

is  β
2 

times smaller than that due to the g-field.  This implies that, for speeds much smaller 

than the speed of light, the effects of het β-information are masked. 

 

The β-information emitted by the rotating sun is not taken into account when the classical 

theory of gravitation describes the planetary orbits.  It can be shown that this is responsible 

for deviations (as the advance of Mercury Perihelion) of the real orbits with respect to these 

predicted by that theory
 (8)

. 

 

5.2.4.3. The interaction between two moving point masses according to linearized G.R.T. 

 

For weak gravitational fields, the linearized form of G.R.T. turns out to be very similar to 

G.E.M.
(3)(8)

.  The laws of the G.E.M field derived from the linear approximation of G.R.T. are 

the same as those derived from the dynamics of the informatons. However this does not 

apply to the force law.   Indeed  if  one accepts that gravitational phenomena propagate with 

the speed c, according to linearized G.R.T. the gravitational force GF
r

 must be expressed as:  

[ ]).(2.0 BvEmFG

rrrr
×+= . 

 

Starting from this force law, we become an expression for the interaction between the 

moving masses that is not consistent with S.R.T. 

 

 

 

   



42 

 

Gravitation explained by the theory of informatons © Antoine  Acke 

 

VI. The gravitational field of an harmonically oscillating point mass m 

Gravito-magnetic waves 

 

In fig 12 we consider a point mass m that harmonically oscillates, with frequency 
π

ων
.2

= , 

around the origin of the inertial reference frame O.   At the moment t it passes in P1.  We 

suppose that the speed of the charge is always much smaller than the speed of light and that 

it is described by: 

tVtv ωcos.)( =  
The elongation z(t) and the acceleration a(t) are than expressed as: 

 

)
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V
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Fig 12 

We restrict our considerations about the gravitational field of m to points P that are 

sufficiently far away from the origin O.  Under this condition we can posit that the 

fluctuation of the length of the vector 11 rPP
r=  is very small relative to the length of the 

time-independent position vector r
r

, that defines the position of P relative to the origin O.  

In other words: we accept that the amplitude of the oscillation is very small relative to the 

distances between the origin and the points P on which we focus. 

 

6.3.1. The transversal gravitational field of an harmonically oscillating point mass 

 

Starting from 0.. jeVV =  - the complex quantity representing )(tv  - the complex 

representation  cgE ⊥  of the time dependant  part of the transversal component of gE
r

  and 

the complex representation ϕgB  of the time dependant part of gB
r

 in P  follow immediately 

from 3.8.2. 
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Where 
c

k
ω=  the phase constant.    Note that 

c

E
B cg

g
⊥=ϕ . 

 

So, an harmonically oscillating point mass emits a transversal “gravitomagnetic” wave that - 

relative to the position of the mass - expands with the speed of light:   
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The intensity of the “far field” is inversely proportional to r, and is determined by the 

component of the acceleration of m, that is perpendicular to the direction of ce
r

. 

 

6.3.2.  The longitudinal gravitational field of an harmonically oscillating point mass 

 

The oscillation of the point mass m along the Z-axis is responsible for the existence of a 

fluctuation of PPr 10 =  (fig 2), the distance travelled by the informatons that at the moment 

t pass near P.  Within the framework of our approximations:  
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From 6.2, it follows:    θ
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So gcE , the complex representation of the time dependant part of the longitudinal 

gravitationel field is:  θ
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We conclude that an harmonically oscillating point mass emits a longitudinal gravitational 

wave that - relative to the position of the mass - expands with the speed of light:   
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6.3.3. The energy radiated by an harmonically oscillating point mass 

 

6.3.3.1. Poynting’s  theorem
 

 

In empty space a gravitomagnetic field is completely defined by the vectorial functions 

);,,( tzyxEg

r
and );,,( tzyxBg

r
.   It can be shown that the spatial  area  G  enclosed by the 

surface S  contains - at the moment t - an amount of energy given  by the expression: 
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The rate at which the energy escapes from G is:   dV
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According to the third  law of gravitoelectromagnetism:   
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By application of the theorem of Ostrogradsky
(4)

:  dSFdVFdiv
G S

..∫∫∫ ∫∫=
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, one can rewrite 

this as:        ∫∫
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One can conclude that the expression dS
BE gg .

0ν

rr
×

 defines the rate at which energy flows 

through the surface element dS in P  in the sense of the positive normal.  So, the density of 

the energy flow in P is:  
0ν

gg BE
rr

×
.  This vectorial quantity is called the “Poynting’s vector”.  It 

is represented by  P
r

: 

0ν
gg BE

P

rr
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=
 

The amount of energy transported through the surface element dS in the sense of the 

positive normal during the time interval dt is: 

 

dtdS
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dU gg ..
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6.3.3.2. The energy radiated by an harmonically oscillating point mass - gravitons 

 

Under 6.3.1 we have shown that an harmonically oscillating point mass m radiates a 

gravitomagnetic wave that in a far point P is defined by (see fig 12):
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The instantaneous value of Poynting’s vector in P is:  
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The amount of energy that, during one period T , flows through the surface element dS that 

in P is perpendicular on the direction of the  movement  of the informatons, is: 
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Ω= d
r

dS
2

 is the solid angle under which dS is “seen” from the origin.  So, the oscillating mass 

radiates, per period, an amount of energy  Ωu   per unit of solid angle in the direction θ :  

νθν
.

8

sin... 222
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c

Vm
u =Ω  

 

The density of the flux of energy is greatest in the direction defined by θ = 90°, thus in the 

direction perpendicular to the movement of the mass.  The radiated energy is proportional to 

the frequency of the wave, thus proportional to the frequency at which the mass  oscillates. 

We posit that an oscillating mass m loads some of the informatons that it emits with a 

discrete energy packet (h’.ν ).  h’ plays the role of Planck’s constant in electromagnetism, 

but his value depends on the nature of the emitter.   Informatons carrying an energy packet 

are called  “gravitons”.  In other words, we postulate that the gravitomagnetic energy 

radiated by an oscillating point mass is transported by informatons.  This implies that 

gravitons rush through space with the speed of light. 
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6.3.3.3. Estimate of the value of h’ 

 

The number of gravitons emitted by an oscillating point mass m per period and per unit of 

solid angle in the direction θ is: 
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It follows that the total number of gravitons that are emitted per period is: 

 

220

0

3
22

0 ..
'.

.
3

.sin.2.
'..8

..
Vm

ch
d

ch

Vm
Ng

νπθθπν π

== ∫
 

If the oscillating point mass is an electron: 
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An oscillating electron also emits photons.  The number of photons it emits per period is
(10)

:   
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If we assume that the number of emitted gravitions equals the number of emitted photons: 
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From which follows:   
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For an oscillating proton, an analogue reasoning leads to: 

 

sJhp .10.35,5 70' −=  

 

 

VII. CONSLUSION: THE NATURE OF THE GRAVITATIONAL FIELD 

 
According to the postulate of the emission of informatons, the gravitational field of a mass 

at rest is characterized by the following statements. 

 

1. Gravitational phenomena propagate with the speed of light. 

 

2. The gravitational field is granular.   

 

3. The gravitational field continuously regenerates.  

  

4. The gravitational field shows fluctuations.   
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5. The gravitational field expands with the speed of light.  

  

6. In a gravitational field, there is conservation of g-information, what mathematically can be 

expressed as a relation between the spatial variation of the g-field gE
r

and the mass density 

Gρ  in any point of the field:  
0η

ρG
gEdiv −=
r

.  

 

Complementary, the following statements are valid for the gravitational field of a uniformly 

moving mass: 

 

7. The g-field gE
r

of a point mass that is moving with constant velocity always points to the 

actual position of that mass.    

 

8. The g-induction gB
r

 shows fluctuations.   

 

9. From the definition of the β-index, it follows: 0=gBdiv
r

.   

 

 10.The spatial variation of the g-induction in a point of a gravitational field depends on the 

densitity of the mass flow GJ
r

 in that point: Gg JBrot
rr

.0ν−=  with 
2

0
0 .

1

cη
ν = .   

 

The definitions of gE
r

 and of gB
r

can be extended to the situation where the gravitational 

field is generated by a set of whether or not - uniformly or not uniformly - moving  point 

masses or by a whether or not moving mass continuum.   In that general case, the 

statements 1 - 10 stay valid.  In addition: 

 

11.From the dynamics of an informaton, it follows that in empty space:   

• 11,a.  
t

B
Erot g

g ∂
∂

−=
r

r
 

• 11,b.  
t

E

c
Brot g

g ∂
∂

=
r

r
.

1
2

 

 

12.There is a perfect isomorphism between the gravitational field and the electromagnetic 

field: in a point P situated in a mass continuum that is characterized by the mass density Gρ  

and the mass flow density GJ
r

, gE
r

 and gB
r

satisfy the following equations: 

 

                             12.1. 
0η

ρG
gEdiv −=

r
                               12.3. 

t

B
Erot g

g ∂
∂

−=
r

r
 

                            12.2. 0=gBdiv
r

                                       12.4. 
t

E

c
JBrot g

Gg ∂
∂

+−=
r

rr
.

1
.

20ν  
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In an inertial reference system, the gravitational interaction between masses is determined 

by the force law of G.E.M. that is analogue to the force law of E.M.  It is the expression of the 

fact that a point mass tends to become blind for the flow of information generated by other 

point masses. 

 

13. A point mass with rest mass m0  that moves with velocity v
r

 through a gravitational field (

gg BE
rr

, ) experiences a force [ ])(.0 ggG BvEmF
rrrr

×+= . 

An accelerated mass is the source of a gravito-magnetic wave. 

 

14. An oscillating point mass radiates a gravito-magnetic wave, transporting energy in the 

form of granular energy packets called “gravitons”. 

 

 

EPILOGUE 

 

1. The theory of informatons is also able to explain the phenomena and the laws of 

electromagnetism
 (6), (9)

.  It is sufficient to add the following rule at the postulate of the 

emission of informatons: 

 

Informatons emitted by an electrically charged point mass (a “point charge” q) at rest in an 

inertial reference frame,  carry an attribute referring to the charge of the emitter, namely the 

e-spin vector.  e-spin vectors are represented as es
r

 and defined by:  

 

1. The e-spin vectors are radial relative to the position of the emitter.  They are 

centrifugal when the emitter carries a positive charge (q = +Q) and centripetal when 

the charge of the emitter is negative (q = -Q).  

 

      2.  se, the magnitude of an e-spin vector depends on Q/m, the charge per unit of mass of  

           the emitter.  It is defined by: 

1240

0

....10.32,8.
.

1 −−== CsmN
m

Q

m

Q

K
se ε

 

           ( mF /10.85,8 12
0

−=ε is the permittivity constant). 

 
Consequently (cfr § III) , the informatons emitted by a moving point charge q have in the 

fixed point P - defined by the time dependant position vector r
r

  (cfr fig 5) -  two attributes 

that are in relation with the fact that q is a moving point charge: their e-spin vector es
r

 and 

their b-vector bs
r

: 

 

r

r

Km

q
e

Km

q
s re

r
rr

.
.

1
..

.

1
.

00 εε
==                and               

c

sv

c

sc
s ee

b

rrrr
r ×

=
×

=
 

 
Macroscopically, these attributes manifest themselves as, respectively the electric field 

strength  (the e-field) E
r

and the magnetic induction (the b-induction) B
r

 in P. 
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2. The assumption that a photon is nothing else than an informaton transporting an energy 

package can explain the duality of light 
 (6), (9) (10)

. 

 

3. The fact that the “theory of informatons” permits to understand the nature of gravitation 

and to deduce the laws that govern the gravitational phenomena justifies the hypothesis 

that “information” is the substance of the gravitational field and it supports the idea that 

informatons really exist. 
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